本文共 896 字,大约阅读时间需要 2 分钟。
机械臂的核心组成是关节,其种类主要包括旋转关节(Revolute Joint, R)和平移关节(Prismatic Joint, P)。旋转关节允许机器人在垂直方向旋转,而平移关节则允许其在水平方向线性运动。虽然高自由度关节(如球形关节)可以通过多个基础关节实现,但研究通常以基础关节为基础。
以常见的笛卡尔坐标机器人为例,其采用三个垂直的平移关节,形成三轴机器人。这种结构使其在joint space拥有的三个自由度直接映射到operational space中的end effector位置和朝向控制。
机器人学中的joint space和operational space是关键概念。
人体手臂与机器人具有不同的冗余性。基础关节数为7个,但operational space仅拥有6个自由度。这种冗余性使机器人在操作中具有更高的灵活性,例如实现避障、防止碰撞或完成复杂动作。然而,控制具备冗余自由度的机械臂需要复杂的逆运动学(Inverse Kinematics)计算,确保end effector按照预期位置和方向运动。
奇异点(Singularity)是机械臂操作中的潜在风险。
机械臂的设计与控制需要综合理解关节自由度、冗余性和奇异点等概念。学习机器人学不仅需要实际操作经验,更要求从线性代数角度深入理解其数学建模与运动学关系。
转载地址:http://yvmzk.baihongyu.com/