博客
关于我
干货 | 从RP入门机器人学
阅读量:768 次
发布时间:2019-03-23

本文共 896 字,大约阅读时间需要 2 分钟。

机器人学基础与应用

关节与运动控制

机械臂的核心组成是关节,其种类主要包括旋转关节(Revolute Joint, R)和平移关节(Prismatic Joint, P)。旋转关节允许机器人在垂直方向旋转,而平移关节则允许其在水平方向线性运动。虽然高自由度关节(如球形关节)可以通过多个基础关节实现,但研究通常以基础关节为基础。

以常见的笛卡尔坐标机器人为例,其采用三个垂直的平移关节,形成三轴机器人。这种结构使其在joint space拥有的三个自由度直接映射到operational space中的end effector位置和朝向控制。

机器人结构与空间关系

机器人学中的joint space和operational space是关键概念。

  • joint space描述各关节的位置或角度,如旋转关节的旋转幅度或平移关节的移动距离。
  • operational space描述end effector的位置和朝向。
    例如,SCARA机器人(结构为RRPR)通过一个平移关节实现垂直方向的运动,其余三个旋转关节决定水平面位置和方向。

冗余自由度与灵活性

人体手臂与机器人具有不同的冗余性。基础关节数为7个,但operational space仅拥有6个自由度。这种冗余性使机器人在操作中具有更高的灵活性,例如实现避障、防止碰撞或完成复杂动作。然而,控制具备冗余自由度的机械臂需要复杂的逆运动学(Inverse Kinematics)计算,确保end effector按照预期位置和方向运动。

奇异点与安全性

奇异点(Singularity)是机械臂操作中的潜在风险。

  • 肘部奇点(Elbow Lock):当手臂伸直并与桌面平行时,end effector在垂直方向无法移动。
  • 腕部奇点(Wrist Lock):工业机械臂在特定关节位置组合下出现,导致end effector无法垂直移动。
    避免奇异点对机器人安全性能有严重影响, cpu

总结

机械臂的设计与控制需要综合理解关节自由度、冗余性和奇异点等概念。学习机器人学不仅需要实际操作经验,更要求从线性代数角度深入理解其数学建模与运动学关系。

转载地址:http://yvmzk.baihongyu.com/

你可能感兴趣的文章
NUC1077 Humble Numbers【数学计算+打表】
查看>>
NuGet Gallery 开源项目快速入门指南
查看>>
NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
查看>>
nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
查看>>
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
Numix Core 开源项目教程
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>